Model Theory

Sheet 8

Deadline: 11.12.25, 2:30 pm.

Exercise 1 (7 points).

In the language $\mathcal{L} = \{E\}$ consisting of a binary relation symbol E, let \mathcal{K} be the class of finitely generated \mathcal{L} -structures \mathcal{A} such that $E^{\mathcal{A}}$ is an equivalence relation whose classes have at most 2 elements.

- a) Show that K is a Fraïssé class and that the Fraïssé limit M is an infinite \mathcal{L} -structure.
- b) Provide an axiomatization T of the Fraïssé limit \mathcal{M} .
- c) Is T totally transcendental?
- d) How many types in $S_1^{\mathcal{M}}(M)$ are not isolated?

Exercise 2 (3 points).

Show that every countable small theory has a prime model.

Hint: When exactly does a theory have a prime model?

Exercise 3 (10 points).

Let \mathcal{M} be a structure in a fixed language \mathcal{L} . We say that the element b of M is algebraic over the subset A of M if there is an A-instance $\varphi[x, \bar{a}]$ in $\operatorname{tp}^{\mathcal{M}}(b/A)$ such that the set

$$\varphi[M, \bar{a}] = \{ c \in M \mid \mathcal{M} \models \varphi[c, \bar{a}] \}$$

is finite. The algebraic closure $\operatorname{acl}^{\mathcal{M}}(A)$ of the set A consists of all elements b that are algebraic over A.

- a) Suppose that $Th(\mathcal{M})$ is \aleph_0 -categorical. Show that $acl^{\mathcal{M}}(A)$ is always finite, whenever A is.
- b) Describe (informally) the algebraic closure of an arbitrary finite subset A of M in the case that \mathcal{M} is a countable model of
 - i) the theory DLO of dense linear orders without endpoints.
 - ii) the theory of $(\mathbb{Z}, 0, s)$ as in Sheet 3, Exercise 2.
 - iii) the theory of an equivalence relation as in Sheet 2, Exercise 1 in the language of part d).
- c) If \mathcal{N} is an elementary extension of \mathcal{M} , show that $\operatorname{acl}^{\mathcal{M}}(A) = \operatorname{acl}^{\mathcal{N}}(A)$ for all $A \subset M$.
- d) Suppose that for every instance $\psi[x, \bar{b}]$ (with \bar{b} arbitrary) in one variable the set $\psi[M, \bar{b}]$ is either finite or co-finite. Using Tarski's test, show that $\operatorname{acl}^{\mathcal{M}}(A)$ is (the universe of) an elementary substructure of \mathcal{M} if A is infinite.

The exercise sheets can be handed in in pairs. Submit them in the mailbox 3.19 in the basement of the Mathematical Institute.